Right answer is (c) 1
The explanation: The given matrix is, \(\begin{vmatrix}cos^2 θ & cosθ\, sinθ & -sinθ \\cosθ\, sinθ & sin^2 θ & cosθ \\sinθ & -cosθ & 0 \end {vmatrix}\)
Now, performing the row operations R1 = R1 + sinθR3 and R2 = R2 – cosθR3
=\(\begin{vmatrix}cos^2 θ + sin^2 θ & cosθ\, sinθ – cosθ sinθ & -sinθ \\cosθ\, sinθ – cosθ sinθ & cos^2 θ + sin^2 θ & cosθ \\sinθ & -cosθ & 0 \end {vmatrix}\)
Solving further,
= \(\begin{vmatrix}1 & 0 & -sinθ \\0 & 1 & cosθ \\sinθ & -cosθ & 0 \end {vmatrix}\)
Breaking the determinant, we get,
= 1(0 + cos^2θ) – sinθ(0 – sinθ)
= 1