The matrix A=\(\begin{bmatrix}2&9\\2&6\end{bmatrix}\) as a sum of symmetric and skew-symmetric matrix is ______
(a) \( \frac{1}{4} \begin{bmatrix}4&11\\11&12\end{bmatrix} – \frac{1}{2} \begin{bmatrix}0&7\\-7&0\end{bmatrix}\)
(b) \( \frac{1}{4} \begin{bmatrix}4&11\\11&12\end{bmatrix} + \frac{1}{2} \begin{bmatrix}0&7\\7&0\end{bmatrix}\)
(c) \( \frac{1}{2} \begin{bmatrix}4&11\\11&12\end{bmatrix} + \frac{1}{2} \begin{bmatrix}0&7\\-7&0\end{bmatrix}\)
(d) \( \frac{1}{2} \begin{bmatrix}4&11\\11&12\end{bmatrix} – \frac{1}{2} \begin{bmatrix}0&7\\-7&0\end{bmatrix}\)
I have been asked this question during a job interview.
Question is taken from Symmetric and Skew Symmetric Matrices in division Matrices of Mathematics – Class 12