Right option is (c) 1.484
The explanation: Let, y = log10x
Then f’(x) = d/dx[log10x]
= d/dx[logex * log10e]
= 1/x(log10e)
Now, f(x + δx) = f(x) + f’(x) δx
Putting x = 30 and δx = 0.5 in the above equation we get,
f(30 + 0.5) = f(30) + f’(30) δx
=> f(30.5) = log1030 + (1/30) log10e * 0.5
Putting the values we get,
log1030.5 = 1.4843 = 1.484