Right option is (c) \(\vec{r}.(2\hat{i}-2\hat{j}+\hat{k})\)=4 and \(\vec{r}.(\hat{i}+2\hat{j}+2\hat{k})\)=5
The explanation is: Consider the set of planes \(\vec{r}.(2\hat{i}-2\hat{j}+\hat{k})=4 \,and \,\vec{r}.(\hat{i}+2\hat{j}+2\hat{k})\)=5
For the set of planes to be perpendicular \(\vec{n_1.}\vec{n_2}\)=0
In the above set of planes, \(\vec{n_1}=2\hat{i}-2\hat{j}+\hat{k}\) and \(\vec{n_2}=\hat{i}+2\hat{j}+2\hat{k}\)
∴\(\vec{n_1}.\vec{n_2}\)=2(1)-2(2)+1(2)=0
Hence, they are perpendicular.