Correct option is (d) \((\vec{r}-(2\hat{i}+\hat{j}-\hat{k})).(2\hat{i}+\hat{j}-3\hat{k})\)=0
To elaborate: The position vector of the point (2,1,-1) is \(\vec{a}=2\hat{i}+\hat{j}-\hat{k}\) and the normal vector \(\vec{N}\) perpendicular to the plane is \(\vec{N}=2\hat{i}+\hat{j}-3\hat{k}\)
The vector equation of the plane is given by \((\vec{r}-\vec{a}).\vec{N}\)=0
Therefore, \((\vec{r}-(2\hat{i}+\hat{j}-\hat{k})).(2\hat{i}+\hat{j}-3\hat{k})\)=0