Right option is (d) d^2x/dt^2 + α^2x = 0
For explanation I would say: Since, x = a cos(αt + β)
Therefore, dx/dt = a cos(αt + β)
And, d^2x/dt^2 = -a α^2 cos(αt + β)
= -α^2 a cos(αt + β)
Or, d^2x/dt^2 = -α^2 [as a cos(αt + β) = x]
So, d^2x/dt^2 + α^2x = 0