Right choice is (d) A will again overtake B and they will never meet again
To explain: Let P and Q be the initial positions of the motor car and motorcycle B respectively, where PQ = 24m.
If possible, let us assume that B overtakes A after point R on the straight road after time t seconds from the start.
Then, considering the motion of motor car A, we get
PR = 1/2 (2) (t^2) = t^2
In this case when B runs at a uniform velocity 11 m/sec, we shall have, QR = 11t.
Therefore, in this case, QP + PR = QR gives,
Or 24 + t^2 = 11t
Or t^2 – 11t + 24 = 0
Or (t – 3)(t – 8) = 0
Or t = 3 or t = 8
Clearly, we are getting two real positive values of t.
Therefore, A and B will meet twice during the motion.
They will first meet after 3 seconds from start when the motorcycle B will overtake the motor car A.
But the velocity of A continuously increases, hence after a further period of (8 – 3) = 5 seconds A will again overtake B and they will never meet again.