The correct choice is (c) x + 2y + 11 = 0
To explain I would say: The equation of any straight line perpendicular to the line 2x – y + 3 = 0 is,
x + 2y + k = 0 ……….(1)
Now, the co-ordinate of the center of the circle (3, -2) and its radius is,
√(9 + 4 – (-7) = 2√5
If straight line (1) be tangent to the given circle then, the perpendicular distance of the point (3, -2) from the line (1) = radius of the circle
Thus, ±(3 + 2(-2) + k)/√(1 + 4)
Or k – 1 = 2√5 * √5
So, k = 1 ± 10
= 11 or -9
Putting the value of k in (1) we get,
x + 2y + 11 = 0 and x + 2y – 9 = 0