Correct choice is (a) 1.2331
Easy explanation: Given, Ms = 1.25
The relation between Ms and MR is:
\(\frac {M_R}{M_R ^2 – 1} = \frac {M_s}{M_s ^2 – 1} \sqrt {1 + \frac {2(γ – 1)}{(γ + 1)^2}(M_s^2 – 1)\big (γ + \frac {1}{M_s ^2} \big )}\)
Substituting the values we get
\(\frac {M_R}{M_R ^2 – 1} = \frac {1.25}{1.25^2 – 1}\sqrt {1 + \frac {2(1.4 – 1)}{(1.4 + 1)^2} (1.25^2 – 1)\big (1.4 + \frac {1}{1.25^2} \big )} \)
\(\frac {M_R}{M_R ^2 – 1} = \frac {1.25}{1.25^2 – 1}\sqrt {1 + \frac {2(1.4 – 1)}{(1.4 + 1)^2} (1.25^2 – 1)\big (1.4 + \frac {1}{1.25^2} \big )} \)
\(\frac {M_R}{M_R ^2 – 1}\) = 2.20\(\sqrt {1 + \frac {0.8}{5.76} (0.5625)(2.04)}\) = 2.3689
MR = 2.3689 MR^2 – 2.3689MR
On solving the quadratic equation we get two results:
MR = 1.2331, – 0.81
Negative values of Mach number is not possible, hence MR = 1.2331