The correct choice is (b) 1.66
Easiest explanation: Given, Mcrit = 0.6, γ = 1.4 (air)
The critical Mach number is calculated using the relation
(Cp)crit = \(\frac {2}{γM_{crit}^{2}} \bigg [ \frac {1 + \frac {1}{2}(γ – 1)M_{crit}^{2}}{1 + \frac {1}{2}(γ – 1)} \bigg ]^{\frac {γ}{γ – 1}}\) – 1
On substituting the values, we get
(Cp)crit = \(\frac {2}{1.4×0.6^{2}} \bigg [ \frac {1 + \frac {(1.4 – 1)}{2} 0.6^{2}}{1 + \frac {(1.4 – 1)}{2}} \bigg ]^{\frac {1.4}{1.4 – 1}}\) – 1
(Cp)crit = 3.97\(\big [ \frac {1.07}{1.20} \big ] \)^3.5 – 1 = 1.66