Correct choice is (c) \(\frac {∂v}{∂x} = \frac {∂u}{∂z}\)
For explanation: The Cartesian form of irrotational flow is given by:
∇ × V = \(\begin{vmatrix}
i & j & k \\
\frac {\partial }{\partial x} & \frac {\partial }{\partial y} & \frac {\partial }{\partial z} \\
u & v & w \\
\end{vmatrix} \)
On expanding this we get,
i(\(\frac {∂w}{∂y} – \frac {∂v}{∂z}\)) – j(\(\frac {∂w}{∂x} – \frac {∂u}{∂z}\)) + k(\(\frac {∂v}{∂x} – \frac {∂u}{∂y}\)) = 0
For irrotational flow since vorticity = 0, ∇ × V = 0
\(\frac {∂w}{∂y} = \frac {∂v}{∂z}\) and \(\frac {∂w}{∂x} = \frac {∂u}{∂z}\) and \(\frac {∂v}{∂x} = \frac {∂u}{∂y}\)