To calculate the apparent circumferential stress, we can use the formula for the hoop stress or circumferential stress in a thin-walled cylinder:
σcirc=Pmax⋅D2⋅t\sigma_{\text{circ}} = \frac{P_{\text{max}} \cdot D}{2 \cdot t}σcirc=2⋅tPmax⋅D
Where:
- σcirc\sigma_{\text{circ}}σcirc is the circumferential stress
- PmaxP_{\text{max}}Pmax is the maximum pressure (3.5 MPa)
- DDD is the diameter (140 mm)
- ttt is the wall thickness (8 mm)
Let's plug in the values:
σcirc=3.5×103 N/m2⋅140 mm2⋅8 mm\sigma_{\text{circ}} = \frac{3.5 \times 10^3 \, \text{N/m}^2 \cdot 140 \, \text{mm}}{2 \cdot 8 \, \text{mm}}σcirc=2⋅8mm3.5×103N/m2⋅140mm
First, convert units for consistency:
- Pmax=3.5 MPa=3.5×103 N/m2P_{\text{max}} = 3.5 \, \text{MPa} = 3.5 \times 10^3 \, \text{N/m}^2Pmax=3.5MPa=3.5×103N/m2
- Diameter D=140 mm=0.14 mD = 140 \, \text{mm} = 0.14 \, \text{m}D=140mm=0.14m
- Wall thickness t=8 mm=0.008 mt = 8 \, \text{mm} = 0.008 \, \text{m}t=8mm=0.008m
Now, calculate the circumferential stress:
σcirc=3.5×103⋅0.142⋅0.008\sigma_{\text{circ}} = \frac{3.5 \times 10^3 \cdot 0.14}{2 \cdot 0.008}σcirc=2⋅0.0083.5×103⋅0.14 σcirc=4900.016\sigma_{\text{circ}} = \frac{490}{0.016}σcirc=0.016490 σcirc=30.625 N/mm2\sigma_{\text{circ}} = 30.625 \, \text{N/mm}^2σcirc=30.625N/mm2
After calculating the above, we see that the correct formula or calculations might have been misunderstood, since the options listed seem inconsistent with the result. However, based on given options, the closest option is:
Answer: (d) 16.1 N/mm².