The correct answer is (d) \(\nabla.(\rho\vec{V})\)dx dy dz
The best I can explain: Net mass flow across the element = change in mass flow in x direction + change in mass flow in y direction + change in mass flow in z direction
= \(\frac{\partial(\rho u)}{\partial x} dx \,dy \,dz + \frac{\partial(\rho v)}{\partial y} dx \,dy \,dz + \frac{\partial(\rho w)}{\partial z} dx \,dy \,dz \)
=\(\left[(\frac{\partial}{\partial x}\vec{i}+\frac{\partial}{\partial y}\vec{j}+\frac{\partial}{\partial z}\vec{k})dx \,dy \,dz.((\rho u)\vec{i} + (\rho v)\vec{j} + (\rho w)\vec{k})\right] \)
Net mass flow across the element = \([\nabla.(\rho \vec{V})]dx \,dy \,dz\).