+1 vote
261 views
in Computational Fluid Dynamics by (118k points)
According to the conservation law, “Net mass flow across the fluid element is equal to the rate of change of mass inside the element”. But, stating the final equation, “Net mass flow across the fluid element + the rate of change of mass inside the element = 0”. Why is the operation not subtraction?

(a) Irrespective of the law, the sum is always zero

(b) The two terms are always opposite in sign

(c) Change in sign is not considered

(d) Rate of change may be increase or decrease

The question was posed to me in unit test.

The question is from Continuity Equation in section Governing Equations of Fluid Dynamics of Computational Fluid Dynamics

1 Answer

+1 vote
by (980k points)
selected by
 
Best answer
The correct option is (b) The two terms are always opposite in sign

The explanation: The “net mass flow across the fluid element” being positive means that it is outward flow. If flow is outward, mass inside the fluid element decreases leading to a negative “rate of change of mass inside the element”. Thus, the two terms are always opposite in sign that they can be summed up to get zero.

Related questions

Welcome to TalkJarvis QnA, a question-answer community website for the people by the people. On TalkJarvis QnA you can ask your doubts, curiosity, questions and whatever going in your mind either related to studies or others. Experts and people from different fields will answer.

Most popular tags

biology – class 12 biology – class 11 construction & building materials chemistry – class 12 electronic devices & circuits network theory data structures & algorithms ii cell biology ic engine insurance finance money computational fluid dynamics engineering physics i discrete mathematics chemistry – class 11 aerodynamics casting-forming-welding i engineering mathematics operating system casting-forming-welding ii engineering drawing mysql engineering geology digital circuits wireless mobile energy management electrical measurements digital communications cyber security analytical instrumentation embedded systems electric drives cytogenetics advanced machining computer fundamentals life sciences basic civil engineering iot design of electrical machines physics – class 12 applied chemistry dairy engineering basic chemical engineering cloud computing microprocessor bioinformatics aircraft design aircraft maintenance software engineering drug biotechnology digital signal processing biochemistry data structures & algorithms i automotive engine design avionics engineering material & metallurgy energy engineering cognitive radio unix electrical machines biomedical instrumentation object oriented programming electromagnetic theory power electronics analog communications bioprocess engineering civil engineering drawing engineering metrology physics – class 11 mathematics – class 12 engineering chemistry i basic electrical engineering unit processes mongodb signals and systems cryptograph & network security hadoop mathematics – class 11 engineering physics ii html control systems engineering mechanics antennas analog circuits computer network java sql server javascript concrete technology chemical process calculation artificial intelligence design of steel structures c++ database management computer architecture engineering chemistry ii corrosion engineering chemical technology dc machines
...