The correct option is (d) \(\frac{u_{i+1,j}-u_{i,j}}{\Delta x}\)
The best I can explain: To get the first-order forward difference approximation,
The Taylor series expansion of ui+1,j is
\(u_{i+1,j}=u_{i,j}+(\frac{\partial u}{\partial x})_{i,j}\Delta x+(\frac{\partial ^2 u}{\partial x^2})_{i,j}\frac{(\Delta x)^2}{2}+⋯\)
\((\frac{\partial u}{\partial x})_{i,j}=\frac{u_{i+1,j}-u_{i,j}}{\Delta x}\).