The correct answer is (b) \(\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(\Delta y)^2}\)
The explanation: To get the second difference,
\(u_{i,j+1}+u_{i,j-1}=2 u_{i,j}+(\frac{\partial^2 u}{\partial y^2})_{i,j}(\Delta y)^2+⋯\)
\((\frac{\partial^2 u}{\partial y^2})_{i,j}=\frac{u_{i,j+1}-2 u_{i,j}+u_{i,j-1}}{(\Delta y)^2} +⋯\)
After truncating,
\((\frac{\partial^2 u}{\partial y^2})_{i,j}=\frac{u_{i,j+1}-2 u_{i,j}+u_{i,j-1}}{(\Delta y)^2}\).