Right choice is (a) \(\int_A(\Gamma A\frac{\partial \phi}{\partial x})dA+\int_A(\Gamma A \frac{\partial\phi}{\partial y}) dA+\int_{\Delta V} S\,dV=0\)
Easy explanation: The general governing equation for a 2-D steady-state diffusion problem is given by
\(\frac{\partial}{\partial x}(\Gamma\frac{\partial \phi}{\partial x})+\frac{\partial}{\partial y}(\Gamma\frac{\partial \phi}{\partial y})+S=0\)
Here, partial differentiation is used as the variable φ varies in both x and y directions, but the differentiation is only in the required direction.
Integrating the equation with respect to the control volume,
\(\int_{\delta V}\frac{\partial}{\partial x}(\Gamma\frac{\partial\phi}{\partial x})dV+\int_{\delta V}\frac{\partial}{\partial y}(\Gamma\frac{\partial \phi}{\partial y})dV+\int_{\Delta V} S \,dV=0\)
Applying Gauss Divergence theorem,
\(\int_A(\Gamma A\frac{\partial\phi}{\partial x})dA+\int_A(\Gamma A\frac{\partial\phi}{\partial y})dA+\int_{\Delta V}S \,dV=0\)
This is the semi-discretized form of the equation.