Correct answer is (d) \(\frac{1+r}{2}\)
Best explanation: To find the flux limiter,
Φf=Φc+\(\frac{1}{2}\) Ψ(r)(ΦD-Φc )
For the FROMM scheme,
Φf=Φc+\(\frac{1}{4}\)(ΦD-ΦU)
Comparing both,
Ψ(r)(ΦD-Φc)=\(\frac{1}{2}\)(ΦD-ΦU)
Ψ(r)=\(\frac{1}{2}\frac{(\phi_D-\phi_U)}{(\phi_D-\phi_c)}\)
Ψ(r)=\(\frac{1}{2}\frac{(\phi_D-\phi_c+\phi_c-\phi_U)}{(\phi_D-\phi_c)}\)
But,
\(\frac{(\phi_c-\phi_U)}{(\phi_D-\phi_c)}=r\)
Therefore,
\(\psi(r)=\frac{1}{2}(1+r)\).