To find the z-transform corresponding to the Laplace transform G(s)=10s(s+5)G(s) = \frac{10}{s(s+5)}G(s)=s(s+5)10, we need to express the Laplace transform in terms of the z-domain. We will use the bilateral z-transform and standard methods for converting Laplace expressions to z-domain expressions.
Steps:
Partial Fraction Decomposition:
Decompose the Laplace function G(s)=10s(s+5)G(s) = \frac{10}{s(s+5)}G(s)=s(s+5)10 into simpler terms:
10s(s+5)=As+Bs+5\frac{10}{s(s+5)} = \frac{A}{s} + \frac{B}{s+5}s(s+5)10=sA+s+5BMultiply both sides by s(s+5)s(s+5)s(s+5) and solve for AAA and BBB:
10=A(s+5)+B(s)10 = A(s+5) + B(s)10=A(s+5)+B(s)Setting s=0s = 0s=0, we get:
10=A(0+5)⇒A=210 = A(0 + 5) \quad \Rightarrow \quad A = 210=A(0+5)⇒A=2Setting s=−5s = -5s=−5, we get:
10=B(−5)⇒B=−210 = B(-5) \quad \Rightarrow \quad B = -210=B(−5)⇒B=−2So the partial fraction decomposition is:
10s(s+5)=2s−2s+5\frac{10}{s(s+5)} = \frac{2}{s} - \frac{2}{s+5}s(s+5)10=s2−s+52Z-Transform of Each Term:
For each term, we can use standard z-transform pairs to convert them to the z-domain.
- The z-transform of 1s\frac{1}{s}s1 is 11−z−1\frac{1}{1-z^{-1}}1−z−11.
- The z-transform of 1s+5\frac{1}{s+5}s+51 is z−11−5z−1\frac{z^{-1}}{1 - 5z^{-1}}1−5z−1z−1.
Using these, we get:
Z{2s}=21−z−1\mathcal{Z}\left\{ \frac{2}{s} \right\} = \frac{2}{1-z^{-1}}Z{s2}=1−z−12 Z{2s+5}=2z−11−5z−1\mathcal{Z}\left\{ \frac{2}{s+5} \right\} = \frac{2z^{-1}}{1 - 5z^{-1}}Z{s+52}=1−5z−12z−1Combine the Results:
Combining these two terms:
G(z)=21−z−1−2z−11−5z−1G(z) = \frac{2}{1 - z^{-1}} - \frac{2z^{-1}}{1 - 5z^{-1}}G(z)=1−z−12−1−5z−12z−1
This is the z-transform corresponding to the given Laplace transfer function G(s)G(s)G(s).
Final Answer:
The z-transform corresponding to G(s)=10s(s+5)G(s) = \frac{10}{s(s+5)}G(s)=s(s+5)10 is:
G(z)=21−z−1−2z−11−5z−1G(z) = \frac{2}{1 - z^{-1}} - \frac{2z^{-1}}{1 - 5z^{-1}}G(z)=1−z−12−1−5z−12z−1