The correct choice is (b) \((\frac{1}{2})^n[2-(\frac{1}{2})^n]\), n>0
The explanation: Let h2(n) be shifted and folded.
so, h(k)=h1(n)*h2(n)=\(\sum_{k=-\infty}^{\infty} h_1 (k)h_2 (n-k)\)
For k<0, h1(n)= h2(n)=0 since the unit step function is defined only on the right hand side.
Therefore, h(k)=\((\frac{1}{2})^k (\frac{1}{4})^{n-k}\)
=>h(n)=\(\sum_{k=0}^n (\frac{1}{2})^k (\frac{1}{4})^{n-k}\)
=\((\frac{1}{4})^n \sum_{k=0}^n(2)^k\)
=\((\frac{1}{4})^n.(2^{n+1}-1)\)
=\((\frac{1}{2})^n[2-(\frac{1}{2})^n], n>0\)