The correct answer is (b) (\(\frac{1}{3}\))^n u[n]
The best explanation: H (e^jω) = H1 (e^jω) + H2 (e^jω)
Or, \(\frac{-12+5e^{-jω}}{12+7e^{-jω}+e^{-j2ω}} = \frac{1}{1-\frac{1}{3} e^{-jω}} + \frac{(-2)}{1-\frac{1}{4} e^{-jω}}\)
∴ H2(e^jω) = \(\frac{1}{1-\frac{1}{3} e^{-jω}}\)
So, h2 [n] = (\(\frac{1}{3}\))^n u[n].