Right choice is (d) All of the mentioned
Explanation: rxx(l)=\(\sum_{n=-\infty}^{\infty} x(n)x(n-l)\)
For l≥0, rxx(l)=\(\sum_{n=l}^{\infty} x(n)x(n-l)\)
=\(\sum_{n=l}^{\infty} a^n a^{n-l}\)
=\(a^{-l}\sum_{n=l}^{\infty} a^{2n}\)
=\(\frac{1}{1-a^2}a^l\)(l≥0)
For l<0, rxx(l)=\(\sum_{n=0}^{\infty} x(n)x(n-l)\)
=\(\sum_{n=0}^\infty a^n a^{n-l}\)
=\(a^{-l}\sum_{n=0}^{\infty} a^{2n}\)
=\(\frac{1}{1-a^2}a^{-l}\)
So, rxx(l)=\(\frac{1}{1-a^2}a^{|l|}\) (-∞<l<∞)