Correct answer is (d) [1/4(-1)^n+3/4+n/2]u(n)
The explanation: The partial fraction expansion of X(z) is \(X(z) = \frac{z}{4(z+1)} + \frac{3z}{4(z-1)} + \frac{z}2{(z-1)^2}\)
When we apply the inverse z-transform for the above equation, we get
x(n)=[1/4(-1)^n+3/4+n/2]u(n).