Right choice is (d) \(\frac{1}{2π} \int_{-π}^π \theta(ω) e^{jωn} dω\)
The explanation is: We know that,
cx(n)=\(\frac{1}{2π} \int_{-π}^π ln(X(ω))e^{jωn} dω\)
If we express X(ω) in terms of its magnitude and phase, say
X(ω)=|X(ω)|e^jθ(ω)
Then ln X(ω)=ln |X(ω)|+jθ(ω)
=> cx(n)=\(\frac{1}{2π} \int_{-π}^π[ln|X(ω)|+jθ(ω)]e^{jωn} dω\) => cx(n)=cm(n)+jcθ(n)(say)
=> cθ(n)=\(\frac{1}{2π} \int_{-π}^πθ(ω) e^{jωn} dω\)