If x(n) is a complex valued sequence given by x(n)=xR(n)+jxI(n), then what is the DFT of xR(n)?
(a) \(\sum_{n=0}^N x_R (n) cos\frac{2πkn}{N}+x_I (n) sin\frac{2πkn}{N}\)
(b) \(\sum_{n=0}^N x_R (n) cos\frac{2πkn}{N}-x_I (n) sin\frac{2πkn}{N}\)
(c) \(\sum_{n=0}^{N-1} x_R (n) cos\frac{2πkn}{N}-x_I (n) sin\frac{2πkn}{N}\)
(d) \(\sum_{n=0}^{N-1} x_R (n) cos\frac{2πkn}{N}+x_I (n) sin\frac{2πkn}{N}\)
This question was addressed to me in an online quiz.
My doubt stems from Properties of DFT topic in portion Discrete Fourier Transform – Properties and Applications of Digital Signal Processing