Right option is (b) N(L+M-2)
Best explanation: The expression for N point DFT is given as
X(p,q)=\(\sum_{l=0}^{L-1}\{W_N^{lq}[\sum_{m=0}^{M-1}x(l,m) W_M^{mq}]\} W_L^{lp}\)
The first step involves L DFTs, each of M points. Hence this step requires LM(M-1) complex additions, second step do not require any additions and finally third step requires ML(L-1) complex additions. So, Total number of complex additions=N(L+M-2).