The correct answer is (c) F1(k)+WN^k F2(k)
Easy explanation: From the question, it is given that
f1(n)=x(2n)
f2(n)=x(2n+1), n=0,1,2…N/2-1
X(k)=\(\sum_{n=0}^{N-1} x(n) W_N^{kn}\), k=0,1,2..N-1
=\(\sum_{n \,even} x(n) W_N^{kn}+\sum_{n \,odd} x(n) W_N^{kn}\)
=\(\sum_{m=0}^{(\frac{N}{2})-1} x(2m)W_N^{2km}+\sum_{m=0}^{(\frac{N}{2})-1} x(2m+1) W_N ^{k(2m+1)}\)
=\(\sum_{m=0}^{(\frac{N}{2})-1} f_1(m) W_{N/2}^{km} + W_N^k \sum_{m=0}^{(N/2)-1} f_2(m) W_{(\frac{N}{2})}^{km}\)
X(k)=F1(k)+ WN^k F2(k).