Right choice is (d) [y(n)-y(n-1)]/T
The explanation is: For the derivative dy(t)/dt at time t=nT, we substitute the backward difference [y(nT)-y(nT-T)]/T. Thus
dy(t)/dt =[y(nT)-y(nT-T)]/T
=[y(n)-y(n-1)]/T
where T represents the sampling interval and y(n)=y(nT).