Right option is (d) \((-1)^m u_c (mT_1)- u_s (mT_1-\frac{T_1}{2})(-1)^{m+k+1}\)
Easy explanation: \(x(nT)=u_c (nT)cos 2πF_c nT-u_s (nT)sin2πF_c nT\) → equ1
=\(u_c (nT)cos\frac{πn(2k-1)}{2}-u_s(nT)sin\frac{πn(2k-1)}{2}\) → equ2
On substituting the above values in equ1, we get say n=2m, \(x(2mT) ≡ xmT_{(1)} = u_c (mT_1)cosπm(2k-1)=(-1)^m u_c (mT_1)\)
where \(T_1=2T=\frac{1}{B}\). For n odd, say n=2m-1 in equ2 then we get the result as follows
\(u_s (mT_1-\frac{T_1}{2})(-1)^{m+k+1}\)
Hence proved.