Right choice is (a) ^1⁄8 cos(x + ^nπ⁄2) –^1⁄16 5^n cos(x + ^nπ⁄2) – ^1⁄16 3^n cos(3x + ^nπ⁄2)
To elaborate: y = sin^2x cos^2x cos(x)
y = ^1⁄4 sin^22x cos^2x cos(x)
y = ^1⁄8 (2sin^22x) cos(x)
y = ^1⁄8 (1 – cos4x) cos(x)
y = ^1⁄8 (1 – cos4x) cos(x)
y = ^1⁄8 cos(x) – ^1⁄8 cos4x cos(x)
y = ^1⁄8 cos(x) – ^1⁄16 (cos5x + cos(3x))
Now, nth derivative is
yn = ^1⁄8 cos(x + ^nπ⁄2) – ^1⁄16 5^n cos(x + ^nπ⁄2) – ^1⁄16 3^n cos(3x + ^nπ⁄2).