Correct choice is (a) (-1)^nn! r^-n-1 Sin(n+1)ϑ
To explain: Here,
Y = \(\frac{1}{(x+i)(x-i)}\)
Y = \(\frac{1}{2i(x-i)} – \frac{1}{2i(x+i)}\)
\(y_n = \frac{-1^n n!}{2i}[(x-i)^{-n-1}-(x+i)^{-n-1}]\)
put x=rcos ϑ and y=rsinϑ, we get
\(y_n=\frac{(-1)^n n!}{2i}[(re^{-iθ})^{-n-1}-(re^{iθ})^{-n-1}]\) (By Eulers Identity)
\(y_n=\frac{(-1)^n n!r^{-n-1}}{2i}[e^{iθ(n+1)}-e^{-iθ(n+1)}]\)
\(y_n=(-1)^n n!r^{-n-1} Sin((n+1)ϑ)\)