Correct answer is (b) \(\sum_{i=0}^{i<=n}\frac{(-1)^i c_{2i}^n}{2i+1}\)
To explain I would say: Expanding sin(x)/x into Taylor series we have
\(\frac{sin(x)}{x}=\frac{1}{1!}-\frac{x^2}{3!}+\frac{x^4}{5!}-…..\infty\)
Now Taking the n^th derivative of function using Leibniz rule we have
\((e^x(\frac{sin(x)}{x}))^{(n)}=c_0^ne^x(\frac{1}{1!}-\frac{x^2}{3!}+\frac{x^4}{5!}-…\infty)+c_1^ne^x(\frac{-2x}{3!}-\frac{4x^3}{5!}-…\infty)+….\)
Now substituting x=0 we have
\([(e^x(\frac{sin(x)}{x}))^{(n)}]_{x=0} = c_0^n(\frac{1}{1!})+c_2^n(\frac{-2!}{3!})+c_4n(\frac{4!}{5!})…\infty\)
\([(e^x(\frac{sin(x)}{x}))^{(n)}]_{x=0}=\sum_{i=0}^{i<=n}\frac{(-1)^i c_{2i}^n}{2i+1}\)
Hence, Option \(\sum_{i=0}^{i<=n}\frac{(-1)^i c_{2i}^n}{2i+1}\) is the right answer.