Correct answer is (b) ^2⁄15
To explain I would say: Given, F(x)=\(\int_0^1\int_{x^2}^x xy(x+y)dydx=\int_0^1 \int_{x^2}^x(x ^2 y+xy^2)dydx\)
=\(\int_0^1 [\frac{x^2 y^2}{2}+\frac{xy^3}{3}] _x^{x^2}dx=\int_0^1 [\frac{x^3}{2}+\frac{x^4}{3}-\frac{x^4}{2}-\frac{x^5}{3} ]dx=\frac{1}{2}+\frac{1}{3}-\frac{1}{2}-\frac{1}{5}=\frac{2}{15}\)