Right answer is (a) ∭R^* f(ρ,∅,z) ρ dρ d∅ dz
For explanation I would say: From the figure we can write x=ρ cos ∅, y=ρ sin ∅, z=z
now we know that during change of variables f(x,y,z) is replaced by
\(f(ρ,∅,z)*J\left(\frac{x,y,z}{ρ,∅,z}\right)\) with limits in functions of x,y,z to functions of ρ,∅,z respectively
\(J\left(\frac{x,y,z}{ρ,∅,z}\right)= \begin{vmatrix}
\frac{∂x}{∂p} & \frac{∂x}{∂∅} &\frac{∂x}{∂z}\\
\frac{∂y}{∂p} &\frac{∂y}{∂∅} &\frac{∂y}{∂z}\\
\frac{∂z}{∂p} &\frac{∂z}{∂∅} &\frac{∂z}{∂z}\\
\end{vmatrix}
= \begin{vmatrix}
cos∅ &-p sin∅ &0\\
sin∅ &p cos∅ &0\\
0 &0 &1\\
\end{vmatrix} = cos ∅(ρ cos ∅) + ρ sin ∅ (sin ∅)\)
= ρ, thus ∭R f(x,y,z)dx dy dz = ∭R^* f(ρ,∅,z) ρ dρ d∅ dz where R^* is the new region.