Correct answer is (d) 2
To explain: Simplifying the expression we have
=\(lt_{(x,y)\rightarrow(0,1)}\frac{(\sqrt{x+y}^2)-(1)^2}{\sqrt{x+y}-1}=lt_{(x,y)\rightarrow(0,1)}\frac{(\sqrt{x+y}+1).(\sqrt{x+y}-1)}{\sqrt{x+y}-1}\)
=\(lt_{(x,y)\rightarrow(0,1)}(\sqrt{x+y}+1)=\sqrt{1}+1\)
=2