Correct answer is (c) Does Not Exist
Explanation: Put x = t : y = a1.t^^1⁄2 : z = a2.t : w = a3.t
\(lt_{(x,y,z,w)\rightarrow(0,0,0,0)}\frac{t^{-6}.t.(a_1)^2.t^6.(a_2)^3.(a_3)^3}{t+t.(a_1)^2+a_2.t-a_3.t}\)
\(lt_{(x,y,z,w)\rightarrow(0,0,0,0)}\frac{t}{t}\times \frac{(a_1)^2.(a_2)^3.(a_3)^3}{1+(a_1)^2+a_2-a_3}\)
\(lt_{(x,y,z,w)\rightarrow(0,0,0,0)} \frac{(a_1)^2.(a_2)^3.(a_3)^3}{1+(a_1)^2+a_2-a_3}\)
By changing the values of a1 : a2 : a3 we get different values of limit.
Hence, Does Not Exist is the right answer.