The correct option is (b) x^(x-1) + x^x ln(x) + x^x [ln(x)]^2
Easiest explanation: \(\frac{dx^x ln(x)}{dx}=\frac{x^x dln(x)}{dx}+\frac{ln(x)dx^x}{dx}\)
Now
Y = x^x
Taking log on both side.
ln(y) = xln(x)
Differntiating both sides
\(\frac{1}{y} \frac{dy}{dx}=1+ln(x)\)
\(\frac{dy}{dx}\)=x^x (1+ln(x))
Hence,
\(\frac{dx^x ln(x)}{dx}=x^{x-1}+x^x ln(x) (1+ln(x) )=x^{x-1}+x^x ln(x)+x^x [ln(x)]^2\)