To approximate the value of (1.04)3.01(1.04)^{3.01}(1.04)3.01, we can use a technique based on linear approximations or the binomial expansion for small changes.
We know that:
(1+x)n≈1+n⋅xfor small values of x.(1 + x)^n \approx 1 + n \cdot x \quad \text{for small values of } x.(1+x)n≈1+n⋅xfor small values of x.
In this case, we can write:
(1.04)3.01=(1+0.04)3.01.(1.04)^{3.01} = (1 + 0.04)^{3.01}.(1.04)3.01=(1+0.04)3.01.
Here, x=0.04x = 0.04x=0.04 and n=3.01n = 3.01n=3.01. Using the linear approximation:
(1.04)3.01≈1+3.01⋅0.04.(1.04)^{3.01} \approx 1 + 3.01 \cdot 0.04.(1.04)3.01≈1+3.01⋅0.04.
Now, calculate the value:
3.01⋅0.04=0.1204.3.01 \cdot 0.04 = 0.1204.3.01⋅0.04=0.1204.
Thus:
(1.04)3.01≈1+0.1204=1.1204.(1.04)^{3.01} \approx 1 + 0.1204 = 1.1204.(1.04)3.01≈1+0.1204=1.1204.
Rounding to two decimal places, we get approximately:
1.12.1.12.1.12.
Thus, the correct answer is:
(d) 1.12.