Right answer is (a) \( \frac{5}{3} \)
The best explanation: \(\frac{dφ}{dx} = y^2, \frac{dφ}{dy} =2xy+z^3, \frac{dφ}{dz} = 3yz^3 \)
\(∇ φ = y^2 \hat{i} + (2xy+z^3) \hat{j} + 3yz^3\hat{k} ̂\)
\([∇ φ]_{(1,-1,1)} = \hat{i} – \hat{j} – 3\hat{k} ̂\)
Now \(a ̅ \) is along the line joining(1,-1,1) and (2,1,-1)
\(a ̅ =(2-1) \hat{i} + (1+1) \hat{j} + (-1-1) \hat{k} = \hat{i} + 2\hat{j} – 2\hat{k} \)
\(a ̂ = \frac{(i ̂ +2 j ̂ -2\hat{k})}{\sqrt{(1+4+4)}} = \frac{1}{3} (i ̂ +2 j ̂ -2\hat{k})\)
∴ Directional derivative = \(∇ φ. a ̂ = (i ̂ – j ̂ -3\hat{k}) . \frac{1}{3} (i ̂ +2 j ̂ -2\hat{k})\)
\(= \frac{1}{3} (1-2+6) = \frac{5}{3} .\)