The correct choice is (b) \(\begin{bmatrix} 1 & \frac{-3}{2} & \frac{7}{2} \\ \frac{-3}{2} & 2 & 0 \\ \frac{7}{2} & 0 & \frac{5}{2}\end{bmatrix} \)
To explain I would say: The following steps need to be followed to obtain the symmetric matrix:
Step 1: There are three variables in the given quadratic equation. Hence, the symmetric matrix to be formed should be of dimension 3×3 and the general form can be written as,
Q = \(\begin{bmatrix}c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \)
Step 2: Place the square term coefficients of the quadratic equation (2, 2, 5) on the diagonal of the matrix.
Q = \(\begin{bmatrix}2 & c_{12} & c_{13} \\ c_{21} & 2 & c_{23} \\ c_{31} & c_{32} & 5\end{bmatrix} \)
Step 3: Place the remaining coefficients of \(x_i x_j \,at\, c_{ij},\) i.e. coefficient of x1 x2 (-3) at c12 and so on.
Q = \(\begin{bmatrix}2&-3 & 0 \\ 0 & 2 & 0 \\ 7 & 0 & 5\end{bmatrix} \)
Step 4: For a symmetric matrix, S = \(\frac{1}{2} (Q+ Q^T)\)
S = \(\frac{1}{2} \begin{bmatrix}2&-3 & 0 \\ 0 & 2 & 0 \\ 7 & 0 & 5\end{bmatrix} + \begin{bmatrix}2 & 0 & 7 \\ -3 & 2 & 0 \\ 0 & 0 & 5\end{bmatrix} \)
\(S = \frac{1}{2} \begin{bmatrix} 2 & -3 & 7 \\ -3 & 4 & 0 \\ 7 & 0 & 10\end{bmatrix} \)
S = \(\begin{bmatrix}1 & \frac{-3}{2} & \frac{7}{2} \\ \frac{-3}{2} & 2 & 0 \\ \frac{7}{2} & 0 & \frac{5}{2}\end{bmatrix} \)