Find the gradient of A if A = ρ^2 + z^3 + cos(ϕ) + z and A is in cylindrical coordinates.
(a) \(2ρz^3 \, a_ρ – \frac{1}{ϕ} sin(ϕ) \, aΦ + 3ρ^2 z^2 \, a_z \)
(b) \(2ρz^3 \, a_ρ – \frac{1}{ρ} sin(ϕ) \, aΦ + 3ρ^2 z^2+1 \, a_z \)
(c) \(2ρz^3 \, a_ρ – \frac{1}{ϕ} sin(ϕ) \, aΦ + 3ρ^2 z^2+1 \, a_z \)
(d) \(2ρz^3 \, a_ρ – \frac{1}{ρ} sin(ϕ) \, aΦ + 3ρ^2 z^2 \, a_z \)
This question was addressed to me by my college professor while I was bunking the class.
My question is taken from Gradient of a Function and Conservative Field in chapter Vector Differential Calculus of Engineering Mathematics