Which of the following is known as Hadamard matrix?
(a) \(\begin{bmatrix}1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\end{bmatrix} \)
(b) \(\begin{bmatrix}1 & -1 & 1 & -1\\ 1 & -1 & 1 & -1\\ 1 & -1 & 1 & -1\\ 1 & -1 & 1 & -1 \end{bmatrix} \)
(c) \(\begin{bmatrix}1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1 \end{bmatrix} \)
(d) \(\begin{bmatrix}0 & 0 & 0 & 0\\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \)
This question was addressed to me in an online interview.
I'm obligated to ask this question of Real Matrices: Symmetric, Skew-symmetric, Orthogonal Quadratic Form topic in division Eigen Values and Eigen Vectors of Engineering Mathematics