Find the half range sine series of the function f(x) = x, when 0<x<\(\frac{\pi}{2} \) and (π-x) when \(\frac{\pi}{2} \)<x< π.
(a) \(\frac{8}{\pi}[\frac{sinx}{1^{2}} – sin\frac{(3x)}{3^{2}} + sin \frac{(5x)}{5^2} – sin \frac{(7x)}{7^{2}} +……] \)
(b) \(\frac{4}{\pi}[\frac{sinx}{1^{2}} + sin\frac{(3x)}{3^{2}} + sin \frac{(5x)}{5^2} + sin \frac{(7x)}{7^{2}} +……] \)
(c) \(\frac{8}{\pi}[\frac{sinx}{1^{2}} + sin\frac{(3x)}{3^{2}} + sin \frac{(5x)}{5^2} + sin \frac{(7x)}{7^{2}} +……] \)
(d) \(\frac{4}{\pi}[\frac{sinx}{1^{2}} – sin\frac{(3x)}{3^{2}} + sin \frac{(5x)}{5^2} – sin \frac{(7x)}{7^{2}} +……] \)
I had been asked this question in an internship interview.
My doubt is from Fourier Half Range Series in section Fourier Series of Engineering Mathematics