Right choice is (b) \(\frac{\pi^2}{8} \)
To explain I would say: Using parseval’s relation for half range Fourier sine series,
\(\int_{-l}^l(f(x))^2 dx=l[\frac{a_0^2}{2}+∑_{n=1}^∞(a_n^2+b_n^2 ) ] \)
L.H.S. = \(\int_0^\pi(1)^2 dx = \pi \)
bn = \(\frac{2}{\pi} \int_0^π1.sin(nx)dx \)
= \(\frac{2}{\pi n} (1-(-1)^n ) \)
Using parseval’s formula,
\(\pi = \frac{\pi}{2} * \frac{4}{\pi^2} * 2 (\frac{1}{1^2} +\frac{1}{3^2} +\frac{1}{5^2} +\frac{1}{7^2} +….) \)
Therefore,
\(\frac{1}{1^2} +\frac{1}{3^2} +\frac{1}{5^2} +\frac{1}{7^2} +….= \frac{\pi^2}{8}.\)