Correct option is (a) \(\frac{π^2}{8} \)
Explanation: \(a_0 = \frac{1}{π} (\int_0^π x dx)(\int_π^{2π} (2π-x) dx) \)
\( = \frac{1}{π} [π^2+4π^2-4 \frac{π^2}{2}-2π^2+\frac{π^2}{2}] \)
\( = π.\)
\(a_n = \frac{1}{π} (\int_0^π (xcos(nx)dx) )(\int_π^{2π}((2π-x)cos(nx))dx) \)
\( = \frac{-4}{πn^2} \) when n is odd and 0 when n is even
\( b_n = 0 \)
now, substituting x=0 in the given function and the Fourier series expansion, we get,
\(0 = \frac{π}{2}-\frac{4}{π} (\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} +….) \)
Therefore, \(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} +………= \frac{π^2}{8} \).