Correct option is (a) sinθ cosφ
To elaborate: Using the formula to convert from Spherical coordinates to Cartesian coordinates and substituting the value of the vector here in Spherical coordinates,
\(\begin{bmatrix}
Px\\
Py\\
Pz\\
\end{bmatrix} \)
\(= \begin{bmatrix}
sin\theta cosφ & cos\theta cosφ & -sinφ\\
sin\theta sinφ & cos\theta sinφ & cosφ\\
cos\theta & -sin\theta & 0\\
\end{bmatrix} \)
\(= \begin{bmatrix}
1\\
0\\
0\\
\end{bmatrix} \), and doing dot product we get, sinθ cosφ.