Convert the vector P to Cartesian coordinates where P = r ar + cosθ aφ.
(a) \(\frac{1}{\sqrt{x^2+y^2+z^2}} [(\frac{x}{\sqrt{x^2+y^2+z^2}}-\frac{xyz}{\sqrt{x^2+y^2 }})az + (\frac{y}{\sqrt{x^2+y^2+z^2}}+\frac{xyz}{\sqrt{x^2+y^2}})ay+ \frac{z}{\sqrt{x^2+y^2+z^2}} ax] \)
(b) \(\frac{1}{\sqrt{x^2+y^2+z^2}} [(\frac{x}{\sqrt{x^2+y^2+z^2}}-\frac{yz}{\sqrt{x^2+y^2 }})ax + (\frac{y}{\sqrt{x^2+y^2+z^2}}+\frac{xz}{\sqrt{x^2+y^2}})ay+ \frac{z}{\sqrt{x^2+y^2+z^2}} az] \)
(c) \(\frac{1}{\sqrt{x^2+y^2+z^2}} [(\frac{x}{\sqrt{x^2+y^2+z^2}}-\frac{y}{\sqrt{x^2+y^2 }})ax + (\frac{y}{\sqrt{x^2+y^2+z^2}}+\frac{z}{\sqrt{x^2+y^2}})ay+ \frac{z}{\sqrt{x^2+y^2+z^2}} az] \)
(d) \(\frac{1}{\sqrt{x^2+y^2+z^2}} [(\frac{x}{\sqrt{x^2+y^2+z^2}}-\frac{y}{\sqrt{x^2+y^2 }})ax + (\frac{y}{\sqrt{x^2+y^2+z^2}}+\frac{x}{\sqrt{x^2+y^2}})ay+ \frac{z}{\sqrt{x^2+y^2+z^2}} az] \)
This question was addressed to me by my college professor while I was bunking the class.
Question is taken from Conversion from Cartesian, Cylindrical and Spherical Coordinates topic in portion Vector Differential Calculus of Engineering Mathematics