Correct answer is (a) \(\frac{a^4}{3} \)
To elaborate: Both the curves meet at (2a,a).
Therefore,
\(x:0 \rightarrow 2a \)
\(y: 0 \rightarrow \frac{x^2}{4a} \)
\(\int_0^2 a \int_0^{\frac{x^2}{4}}a xydxdy \)
\(= \int_0^2 a \frac{xy^2}{2} dx \) (from 0 to \( \frac{x^2}{4a}) \)
\( = \frac{1}{2} \int_0^{2a} \frac{x^5}{(16a^2 )} dx \)
\( = \frac{a^4}{3}. \)