Right option is (b) False
The best I can explain: Case 1: \(\lim_{x \to 0 \\ y \to 0}\frac{3xy+3y+3x}{5x+5y}\)
\(\lim_{y \to 0}\frac{3y}{5y}\)=\(\frac{3}{5}\)
Case 2: \(\lim_{y \to 0 \\ x \to 0}\frac{3xy+3y+3x}{5x+5y}\)
\(\lim_{x \to 0}\frac{3x}{5x}\)=\(\frac{3}{5}\)
Case 3: Along a linear path, \(\lim_{y \to mx \\ x \to 0}\frac{3xy+3y+3x}{5x+5y}\)
\(\lim_{x \to 0}\frac{3mx^2+3mx+3x}{5x}\)=\(\frac{3(m+1)}{5}\)
Since, the cases are not equal, f(x, y) is discontinuous at x=0.