Correct answer is (b) False
Explanation: Case 1: \(\lim_{x \to 1 \\ y \to 1}\frac{2xy-3x}{3x-2y}\)
\(\lim_{y \to 1}\frac{2y-3}{3-2y}\)=\(\frac{-1}{1}\)=-1
Case 2: \(\lim_{y \to 1 \\ x \to 1}\frac{2xy-3x}{3x-2y}\)
\(\lim_{x \to 1}\frac{2x-3x}{3x-2}\)=\(\frac{-1}{1}\)=-1
Case 3: \(\lim_{y \to mx \\ x \to 0}\frac{2xy-3x}{3x-2y}\)
\(\lim_{x \to 0}\frac{2mx^2-3x}{3x-2mx}\)=\(\frac{-3}{3-2m}\)
Since the cases are not same, f(x, y) is discontinuous at x=1.